Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes.
نویسندگان
چکیده
Nonsteroidal anti-inflammatory drugs (NSAIDs), used for the treatment of pain and inflammation, are eliminated primarily through conjugation with polar sugar moieties to form glucuronides. Glucuronidation is catalyzed by the UDP-glucuronosyltransferases (UGT) superfamily. An inverse relationship may exist between glucuronidation activity and NSAID efficacy; however, specific UGTs catalyzing conjugation of the structurally diverse NSAIDs have yet to be identified systematically. Therefore, NSAID glucuronidation activity by 12 individually expressed UGTs was investigated by liquid chromatography-tandem mass spectrometry. The relative rates of NSAID glucuronidation varied among UGT enzymes examined, demonstrating specificity of the individual UGTs toward selected NSAIDs. Kinetic parameters were determined for expressed UGT Supersomes and compared with parameters determined in pooled human liver microsomes (HLMs). Comparison of K(m) values suggested roles for UGTs 1A3 and 2B7 in indene glucuronidation and UGTs 1A9, 2B4, and 2B7 in profen glucuronidation. Inhibitory studies in pooled HLMs support the role of UGTs 1A1, 1A3, 1A9, 2B4, and 2B7 in the glucuronidation of ibuprofen, flurbiprofen, and ketoprofen. Bilirubin did not inhibit indomethacin or diclofenac glucuronidation, suggesting that UGT1A1 was not involved in catalysis. Imipramine did not inhibit glucuronidation of sulindac, sulindac sulfone, indomethacin, or naproxen in pooled HLMs, suggesting that UGT1A3 was not a principal hepatic catalyst. Nevertheless, multiple UGT enzymes, most notably UGTs 1A1, 1A9, 2B4, and 2B7, seem to be involved in the hepatic catalysis of NSAID glucuronidation.
منابع مشابه
Human renal cortical and medullary UDP-glucuronosyltransferases (UGTs): immunohistochemical localization of UGT2B7 and UGT1A enzymes and kinetic characterization of S-naproxen glucuronidation.
There is currently little information regarding the localization of UDP-glucuronosyltransferases (UGTs) in human renal cortex and medulla, and the functional contribution of renal UGTs to drug glucuronidation remains poorly defined. Using human kidney sections and human kidney cortical microsomes (HKCM) and human kidney medullary microsomes (HKMM), we combined immunohistochemistry to investigat...
متن کاملGlucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes
Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various endogenous and exogenous substrates. Among 19 functional human UGTs, UGT1A family enzymes largely contribute to the metabolism of clinically used drugs. While the UGT1A locus is conserved in mammals such as humans, mice, and rats, species differences in drug glu...
متن کاملGlucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.
Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by U...
متن کاملN-Glucuronidation of Drugs and Other Xenobiotics
UDP-glucuronosyltransferases (UGTs) are a family of metabolic enzymes responsible for the detoxification of a wide range of endoand xenobiotics, including drugs. UGTmediated metabolism is a major determinant of the pharmacokinetic behavior of many drugs in the human body, contributing to parameters such as bioavailability and elimination. UGTs catalyze the transfer of glucuronic acid from UDP-g...
متن کاملStereoselective Pharmacokinetics and Chiral Inversion of Ibuprofen in Adjuvant-induced Arthritic Rats.
2-Arylpropionic acid (2-APA) nonsteroidal anti-inflammatory drugs are commonly used in racemic mixtures (rac) for clinical use. 2-APA undergoes unidirectional chiral inversion of the in vivo inactive R-enantiomer to the active S-enantiomer. Inflammation causes the reduction of metabolic activities of drug-metabolizing enzymes such as cytochrome P450 (P450) and UDP-glucuronosyltransferase. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 33 7 شماره
صفحات -
تاریخ انتشار 2005